Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Neuro Oncol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656347

RESUMO

BACKGROUND: Single session stereotactic radiosurgery (SRS) or surgical resection alone for brain metastases larger than 2 cm results in unsatisfactory local control. We conducted a phase I trial for brain metastases(>2cm) to determine the safety of preoperative SRS at escalating doses. METHODS: Radiosurgery dose was escalated at 3 Gy increments for 3 cohorts based on maximum tumor dimension starting at: 18 Gy for >2-3 cm, 15 Gy for >3-4 cm, and 12 Gy for >4-6 cm. Dose limiting toxicity (DLT) was defined as grade III or greater acute toxicity. RESULTS: A total of 35 patients/36 lesions were enrolled. For tumor size >2-3 cm, patients were enrolled up to the second dose level (21 Gy); for >3-4 cm and >4-6 cm cohorts the third dose level (21 Gy and 18 Gy, respectively) was reached. There were 2 DLTs in the >3-4 cm arm at 21Gy. The maximum tolerated dose (MTD) of SRS for >2-3 cm was not reached; and was 18 Gy for both >3-4 cm arm and >4-6 cm arm. With a median follow-up of 64.0 months, the 6- and 12-month local control rates were 85.9% and 76.6%, respectively. One patient developed grade 3 radiation necrosis at 5 months. The 2-year rate of leptomeningeal disease (LMD) was 0%. CONCLUSION: Preoperative SRS with dose escalation followed by surgical resection for brain metastases greater than 2 cm in size demonstrates acceptable acute toxicity. The phase II portion of the trial will be conducted at the maximum tolerated SRS doses.

2.
Neuro Oncol ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38459978

RESUMO

BACKGROUND: The American Radium Society (ARS) Central Nervous System (CNS) committee reviewed literature on epidermal growth factor receptor mutated (EGFRm) and ALK-fusion (ALK+) tyrosine kinase inhibitors (TKIs) for the treatment of brain metastases (BrMs) from non-small cell lung cancers (NSCLC) to generate appropriate use guidelines addressing use of TKIs in conjunction with or in lieu of radiotherapy (RT). METHODS: The panel developed three key questions to guide systematic review: can radiotherapy be deferred in patients receiving EGFR or ALK TKIs at 1) diagnosis or 2) recurrence? Should TKI be administered concurrently with RT (3)? Two literature searches were performed (May 2019 and December 2023). The panel developed 8 model cases and voted on treatment options using a 9-point scale, with 1-3, 4-6 and 7-9 corresponding to usually not appropriate, may be appropriate, and usually appropriate (respectively), per the UCLA/RAND Appropriateness Method. RESULTS: Consensus was achieved in only 4 treatment scenarios, all consistent with existing ARS-AUC guidelines for multiple BrM. The panel did not reach consensus that RT can be appropriately deferred in patients with BrM receiving CNS penetrant ALK or EGFR TKIs, though median scores indicated deferral may be appropriate under most circumstances. Whole brain RT with concurrent TKI generated broad disagreement except in cases with 2-4 BrM, where it was considered usually not appropriate. CONCLUSIONS: We identified no definitive studies dictating optimal sequencing of TKIs and RT for EGFRm and ALK+ BrM. Until such studies are completed, the committee hopes these cases guide decision-making in this complex clinical space.

3.
Neuro Oncol ; 26(12 Suppl 2): S56-S65, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38437665

RESUMO

Radiation therapy with stereotactic radiosurgery (SRS) or whole brain radiation therapy is a mainstay of treatment for patients with brain metastases. The use of SRS in the management of brain metastases is becoming increasingly common and provides excellent local control. Cerebral radiation necrosis (RN) is a late complication of radiation treatment that can be seen months to years following treatment and is often indistinguishable from tumor progression on conventional imaging. In this review article, we explore risk factors associated with the development of radiation necrosis, advanced imaging modalities used to aid in diagnosis, and potential treatment strategies to manage side effects.


Assuntos
Neoplasias Encefálicas , Lesões por Radiação , Radiocirurgia , Humanos , Neoplasias Encefálicas/radioterapia , Lesões por Radiação/diagnóstico , Lesões por Radiação/etiologia , Lesões por Radiação/terapia , Radiocirurgia/efeitos adversos , Fatores de Risco , Necrose
4.
J Appl Clin Med Phys ; 25(3): e14284, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295191

RESUMO

PURPOSE: External beam radiotherapy is a complex process, involving timely coordination among multiple teams. The aim of this study is to report our experience of establishing a standardized workflow and using quantitative data and metrics to manage the time-to-treatment initiation (TTI). METHODS AND MATERIALS: Starting in 2014, we established a standard process in a radiation oncology-specific electronic medical record system (RO-EMR) for patients receiving external beam radiation therapy in our department, aiming to measure the time interval from simulation to treatment initiation, defined as TTI, for radiation oncology. TTI data were stratified according to the following treatment techniques: three-dimensional (3D) conformal therapy, intensity-modulated radiotherapy (IMRT), and stereotactic body radiotherapy (SBRT). Statistical analysis was performed with the Mann-Whitney test for the respective metrics of aggregate data for the initial period 2012- 2015 (PI) and the later period 2016-2019 (PII). RESULT: Over 8 years, the average annual number of treatments for PI and PII were 1760 and 2357 respectively, with 3D, IMRT, and SBRT treatments accounting for 53, 29, 18% and 44, 34, 22%, respectively, of the treatment techniques. The median TTI for 3D, IMRT, and SBRT for PI and PII were 1, 6, 7, and 1, 5, 7 days, respectively, while the 90th percentile TTI for the three techniques in both periods were 5, 9, 11 and 4, 9, 10 days, respectively. From the aggregate data, the TTI was significantly reduced (p = 0.0004, p < 0.0001, p < 0.0001) from PI to PII for the three treatment techniques. CONCLUSION: Establishing a standardized workflow and frequently measuring TTI resulted in shortening the TTI during the early years (in PI) and maintaining the established TTI in the subsequent years (in PII).


Assuntos
Radiocirurgia , Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Fluxo de Trabalho , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/métodos , Radiocirurgia/métodos
5.
Adv Radiat Oncol ; 9(3): 101402, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38292892

RESUMO

Purpose: Brain metastases are common among adult patients with solid malignancies and are increasingly being treated with stereotactic radiosurgery (SRS). As more patients with brain metastases are becoming eligible for SRS, there is a need for practical review of patient selection and treatment considerations. Methods and Materials: Two patient cases were identified to use as the foundation for a discussion of a wide and representative range of management principles: (A) SRS alone for 5 to 15 lesions and (B) a large single metastasis to be treated with pre- or postoperative SRS. Patient selection, fractionation, prescription dose, treatment technique, and dose constraints are discussed. Literature relevant to these cases is summarized to provide a framework for treatment of similar patients. Results: Treatment of brain metastases with SRS requires many considerations including optimal patient selection, fractionation selection, and plan optimization. Conclusions: Case-based practice guidelines developed by the Radiosurgery Society provide a practical guide to the common scenarios noted above affecting patients with metastatic brain tumors.

6.
Int J Radiat Oncol Biol Phys ; 118(3): 650-661, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37717787

RESUMO

PURPOSE: Preoperative stereotactic radiosurgery (SRS) is a feasible alternative to postoperative SRS for resected brain metastases (BM). Most reported studies of preoperative SRS used single-fraction SRS (SF-SRS). The goal of this study was to compare outcomes and toxicity of preoperative SF-SRS with multifraction (3-5 fractions) SRS (MF-SRS) in a large international multicenter cohort (Preoperative Radiosurgery for Brain Metastases-PROPS-BM). METHODS AND MATERIALS: Patients with BM from solid cancers, of which at least 1 lesion was treated with preoperative SRS followed by planned resection, were included from 8 institutions. SRS to synchronous intact BM was allowed. Exclusion criteria included prior or planned whole brain radiation therapy. Intracranial outcomes were estimated using cumulative incidence with competing risk of death. Propensity score matched (PSM) analyses were performed. RESULTS: The study cohort included 404 patients with 416 resected index lesions, of which SF-SRS and MF-SRS were used for 317 (78.5%) and 87 patients (21.5%), respectively. Median dose was 15 Gy in 1 fraction for SF-SRS and 24 Gy in 3 fractions for MF-SRS. Univariable analysis demonstrated that SF-SRS was associated with higher cavity local recurrence (LR) compared with MF-SRS (2-year: 16.3% vs 2.9%; P = .004), which was also demonstrated in multivariable analysis. PSM yielded 81 matched pairs (n = 162). PSM analysis also demonstrated significantly higher rate of cavity LR with SF-SRS (2-year: 19.8% vs 3.3%; P = .003). There was no difference in adverse radiation effect, meningeal disease, or overall survival between cohorts in either analysis. CONCLUSIONS: Preoperative MF-SRS was associated with significantly reduced risk of cavity LR in both the unmatched and PSM analyses. There was no difference in adverse radiation effect, meningeal disease, or overall survival based on fractionation. MF-SRS may be a preferred option for neoadjuvant radiation therapy of resected BMs. Additional confirmatory studies are needed. A phase 3 randomized trial of single-fraction preoperative versus postoperative SRS (NRG-BN012) is ongoing (NCT05438212).


Assuntos
Neoplasias Encefálicas , Lesões por Radiação , Radiocirurgia , Humanos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Estudos de Coortes , Fracionamento da Dose de Radiação , Lesões por Radiação/etiologia , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Estudos Retrospectivos , Resultado do Tratamento , Ensaios Clínicos Fase III como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Ann Palliat Med ; 12(6): 1447-1462, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37817502

RESUMO

BACKGROUND AND OBJECTIVE: Malignant epidural spinal cord compression (MESCC), often presenting with back pain and motor/sensory deficits, is associated with poor survival, particularly when there is loss of ambulation. The purpose of this review is to evaluate the literature and discuss appropriate workup and management of MESCC, specifically in the emergent setting. METHODS: A PubMed search was conducted on "spinal cord compression" and "radiation therapy." Articles were analyzed for the purpose of this narrative review. KEY CONTENT AND FINDINGS: If MESCC is suspected, neurologic examination and complete spine imaging are recommended. Emergent treatment is indicated if there is radiographic evidence of high-grade compression and/or clinically significant motor deficits. Treatment involves a combination of medical management, surgical decompression, radiation therapy (RT), and rehabilitation. For motor deficits, emergent initiation of high dose steroids is recommended. Circumferential surgical decompression ± stabilization followed by RT provides superior clinical outcomes than RT alone. For patients whom surgery is not reasonable, RT alone may provide significant treatment response which depends on radioresponsiveness of the pathology. Systemic therapy, if indicated, is typically reserved till after primary treatment of MESCC, but patients with chemoresponsive tumors may receive primary chemotherapy. The selected RT schedule should be personalized to each patient and commonly is 30 Gy in 10 fractions (fx), 20 Gy in 5 fx, or 8 Gy in 1 fx. MESCC recurrence may be treated with additional RT, if within the spinal cord tolerance, or surgery. Stereotactic body radiation therapy (SBRT) has been used for high grade MESCC in patients with relatively intact neurologic function at a few centers with a very robust infrastructure to support rapid initiation of treatment within a short period of time, but is generally not feasible for most clinical practices. SBRT may be advantageous for low grade MESCC, recurrence, or in the post-operative setting. Detection of MESCC prior to development of high-grade compression or deterioration of neurologic function may allow patients to benefit more from advanced therapies and improve prognosis. CONCLUSIONS: MESCC is a devastating condition; optimal treatment should be personalized to each patient and approached collaboratively by a multidisciplinary team.


Assuntos
Radiocirurgia , Compressão da Medula Espinal , Neoplasias da Coluna Vertebral , Humanos , Compressão da Medula Espinal/diagnóstico , Neoplasias da Coluna Vertebral/complicações , Neoplasias da Coluna Vertebral/radioterapia , Prognóstico , Descompressão Cirúrgica/métodos
8.
J Appl Clin Med Phys ; 24(10): e14070, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37540084

RESUMO

To evaluate the dosimetric impact of titanium implants in spine SBRT using four dose calculation algorithms. Twenty patients with titanium implants in the spine treated with SBRT without density override (DO) were selected. The clinical plan for each patient was created in Pinnacle and subsequently imported into Eclipse (AAA and AcurosXB) and Raystation (CC) for dose evaluation with and without DO to the titanium implant. We renormalized all plans such that 90% of the tumor volume received the prescription dose and subsequently evaluated the following dose metrics: (1) the maximum dose to 0.03 cc (Dmax), dose to 99% (D99%) and 90% (D90%) of the tumor volume; (2) Dmax and volumetric metrics of the spinal cord. For the same algorithm, plans with and without DO had similar dose distributions. Differences in Dmax, D99% and D90% of the tumor were on average <2% with slightly larger variations up to 5.58% in Dmax using AcurosXB. Dmax of the spinal cord for plans calculated with DO increased but the differences were clinically insignificant for all algorithms (mean: 0.36% ± 0.7%). Comparing to the clinical plans, the relative differences for all algorithms had an average of 1.73% (-10.36%-13.21%) for the tumor metrics and -0.93% (-9.87%-10.95%) for Dmax of the spinal cord. A few cases with small tumor and spinal cord volumes, dose differences of >10% in both D99% and Dmax of the tumor, and Dmax of the spinal cord were observed. For all algorithms, the presence of titanium implants in the spine for most patients had minimal impact on dose distributions with and without DO. For the same plan calculated with different algorithms, larger differences in volumetric metrics of >10% could be observed, impacted by dose gradient at the plan normalization volume, tumor volumes, plan complexity, and partial voxel volume interpolation.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Titânio , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica , Neoplasias Pulmonares/cirurgia , Algoritmos
9.
Ann Palliat Med ; 12(6): 1405-1419, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37431225

RESUMO

BACKGROUND AND OBJECTIVE: As novel systemic therapies allow patients to live longer with cancer, the risk of developing central nervous system (CNS) metastases increases and providers will more frequently encounter emergent presentation of brain metastases (BM) and leptomeningeal metastases (LM). Management of these metastases requires appropriate work-up and well-coordinated multidisciplinary care. We set out to perform a review of emergent radiotherapy (RT) for CNS metastases, specifically focusing on BM and LM. METHODS: We review the appropriate pathways for workup and initial management of BM and LM, while reviewing the literature supporting emergent treatment of these entities with surgery, systemic anti-cancer therapy, and RT. To inform this narrative review, literature searches in PubMed and Google Scholar were conducted, with preference given to articles employing modern RT techniques, when applicable. Due to the paucity of high-quality evidence for management of BM and LM in the emergent setting, discussion was supplemented by the authors' expert commentary. KEY CONTENT AND FINDINGS: This work highlights the importance of surgical evaluation, particularly for patients presenting with significant mass effect, hemorrhagic metastases, or increased intracranial pressure. We review the rare situations where emergent initiation of systemic anti-cancer therapy is indicated. When defining the role of RT, we review factors guiding selection of appropriate modality, treatment volume, and dose-fractionation. Generally, 2D- or 3D-conformal treatment techniques prescribed as 30 Gy in 10 fractions or 20 Gy in 5 fractions, should be employed in the emergent setting. CONCLUSIONS: Patients with BM and LM present from a diverse array of clinical situations, requiring well-coordinated multidisciplinary management, and there is a paucity of high-quality evidence guiding such management decisions. This narrative review aims to more thoroughly prepare providers for the challenging situation of emergent management of BM and LM.


Assuntos
Neoplasias Encefálicas , Carcinomatose Meníngea , Humanos , Carcinomatose Meníngea/secundário , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Encéfalo
10.
J Neurooncol ; 163(3): 647-655, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37341842

RESUMO

PURPOSE: Distinguishing radiation necrosis from tumor progression among patients with brain metastases previously treated with stereotactic radiosurgery represents a common diagnostic challenge. We performed a prospective pilot study to determine whether PET/CT with 18F-fluciclovine, a widely available amino acid PET radiotracer, repurposed intracranially, can accurately diagnose equivocal lesions. METHODS: Adults with brain metastases previously treated with radiosurgery presenting with a follow-up tumor-protocol MRI brain equivocal for radiation necrosis versus tumor progression underwent an 18F-fluciclovine PET/CT of the brain within 30 days. The reference standard for final diagnosis consisted of clinical follow-up until multidisciplinary consensus or tissue confirmation. RESULTS: Of 16 patients imaged from 7/2019 to 11/2020, 15 subjects were evaluable with 20 lesions (radiation necrosis, n = 16; tumor progression, n = 4). Higher SUVmax statistically significantly predicted tumor progression (AUC = 0.875; p = 0.011). Lesion SUVmean (AUC = 0.875; p = 0.018), SUVpeak (AUC = 0.813; p = 0.007), and SUVpeak-to-normal-brain (AUC = 0.859; p = 0.002) also predicted tumor progression, whereas SUVmax-to-normal-brain (p = 0.1) and SUVmean-to-normal-brain (p = 0.5) did not. Qualitative visual scores were significant predictors for readers 1 (AUC = 0.750; p < 0.001) and 3 (AUC = 0.781; p = 0.045), but not for reader 2 (p = 0.3). Visual interpretations were significant predictors for reader 1 (AUC = 0.898; p = 0.012) but not for reader 2 (p = 0.3) or 3 (p = 0.2). CONCLUSIONS: In this prospective pilot study of patients with brain metastases previously treated with radiosurgery presenting with a contemporary MRI brain with a lesion equivocal for radiation necrosis versus tumor progression, 18F-fluciclovine PET/CT repurposed intracranially demonstrated encouraging diagnostic accuracy, supporting the pursuit of larger clinical trials which will be necessary to establish diagnostic criteria and performance.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Adulto , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radiocirurgia/efeitos adversos , Projetos Piloto , Estudos Prospectivos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/etiologia , Necrose/diagnóstico por imagem , Necrose/etiologia
11.
Cancers (Basel) ; 15(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37296975

RESUMO

INTRODUCTION: Traditionally, brain metastases have been treated with stereotactic radiosurgery (SRS), whole-brain radiation (WBRT), and/or surgical resection. Non-small cell lung cancers (NSCLC), over half of which carry EGFR mutations, are the leading cause of brain metastases. EGFR-directed tyrosine kinase inhibitors (TKI) have shown promise in NSCLC; but their utility in NSCLC brain metastases (NSCLCBM) remains unclear. This work sought to investigate whether combining EGFR-TKI with WBRT and/or SRS improves overall survival (OS) in NSCLCBM. METHODS: A retrospective review of NSCLCBM patients diagnosed during 2010-2019 at a tertiary-care US center was performed and reported following the 'strengthening the reporting of observational studies in epidemiology' (STROBE) guidelines. Data regarding socio-demographic and histopathological characteristics, molecular attributes, treatment strategies, and clinical outcomes were collected. Concurrent therapy was defined as the combination of EGFR-TKI and radiotherapy given within 28 days of each other. RESULTS: A total of 239 patients with EGFR mutations were included. Of these, 32 patients had been treated with WBRT only, 51 patients received SRS only, 36 patients received SRS and WBRT only, 18 were given EGFR-TKI and SRS, and 29 were given EGFR-TKI and WBRT. Median OS for the WBRT-only group was 3.23 months, for SRS + WBRT it was 3.17 months, for EGFR-TKI + WBRT 15.50 months, for SRS only 21.73 months, and for EGFR-TKI + SRS 23.63 months. Multivariable analysis demonstrated significantly higher OS in the SRS-only group (HR = 0.38, 95% CI 0.17-0.84, p = 0.017) compared to the WBRT reference group. There were no significant differences in overall survival for the SRS + WBRT combination cohort (HR = 1.30, 95% CI = 0.60, 2.82, p = 0.50), EGFR-TKIs and WBRT combination cohort (HR = 0.93, 95% CI = 0.41, 2.08, p = 0.85), or the EGFR-TKI + SRS cohort (HR = 0.46, 95% CI = 0.20, 1.09, p = 0.07). CONCLUSIONS: NSCLCBM patients treated with SRS had a significantly higher OS compared to patients treated with WBRT-only. While sample-size limitations and investigator-associated selection bias may limit the generalizability of these results, phase II/III clinicals trials are warranted to investigate synergistic efficacy of EGFR-TKI and SRS.

12.
JAMA Oncol ; 9(8): 1066-1073, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37289451

RESUMO

Importance: Preoperative stereotactic radiosurgery (SRS) has been demonstrated as a feasible alternative to postoperative SRS for resectable brain metastases (BMs) with potential benefits in adverse radiation effects (AREs) and meningeal disease (MD). However, mature large-cohort multicenter data are lacking. Objective: To evaluate preoperative SRS outcomes and prognostic factors from a large international multicenter cohort (Preoperative Radiosurgery for Brain Metastases-PROPS-BM). Design, Setting, and Participants: This multicenter cohort study included patients with BMs from solid cancers, of which at least 1 lesion received preoperative SRS and a planned resection, from 8 institutions. Radiosurgery to synchronous intact BMs was allowed. Exclusion criteria included prior or planned whole-brain radiotherapy and no cranial imaging follow-up. Patients were treated between 2005 and 2021, with most treated between 2017 and 2021. Exposures: Preoperative SRS to a median dose to 15 Gy in 1 fraction or 24 Gy in 3 fractions delivered at a median (IQR) of 2 (1-4) days before resection. Main Outcomes and Measures: The primary end points were cavity local recurrence (LR), MD, ARE, overall survival (OS), and multivariable analysis of prognostic factors associated with these outcomes. Results: The study cohort included 404 patients (214 women [53%]; median [IQR] age, 60.6 [54.0-69.6] years) with 416 resected index lesions. The 2-year cavity LR rate was 13.7%. Systemic disease status, extent of resection, SRS fractionation, type of surgery (piecemeal vs en bloc), and primary tumor type were associated with cavity LR risk. The 2-year MD rate was 5.8%, with extent of resection, primary tumor type, and posterior fossa location being associated with MD risk. The 2-year any-grade ARE rate was 7.4%, with target margin expansion greater than 1 mm and melanoma primary being associated with ARE risk. Median OS was 17.2 months (95% CI, 14.1-21.3 months), with systemic disease status, extent of resection, and primary tumor type being the strongest prognostic factors associated with OS. Conclusions and Relevance: In this cohort study, the rates of cavity LR, ARE, and MD after preoperative SRS were found to be notably low. Several tumor and treatment factors were identified that are associated with risk of cavity LR, ARE, MD, and OS after treatment with preoperative SRS. A phase 3 randomized clinical trial of preoperative vs postoperative SRS (NRG BN012) has began enrolling (NCT05438212).


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Humanos , Feminino , Pessoa de Meia-Idade , Radiocirurgia/métodos , Estudos de Coortes , Estudos Retrospectivos , Fatores de Risco , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/secundário
13.
Cancers (Basel) ; 15(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37190312

RESUMO

Introduction: Up to 50% of non-small cell lung cancer (NSCLC) harbor EGFR alterations, the most common etiology behind brain metastases (BMs). First-generation EGFR-directed tyrosine kinase inhibitors (EGFR-TKI) are limited by blood-brain barrier penetration and T790M tumor mutations, wherein third-generation EGFR-TKIs, like Osimertinib, have shown greater activity. However, their efficacy has not been well-studied in later therapy lines in NSCLC patients with BMs (NSCLC-BM). We sought to compare outcomes of NSCLC-BM treated with either first- or third-generation EGFR-TKIs in first-line and 2nd-to-5th-line settings. Methods: A retrospective review of NSCLC-BM patients diagnosed during 2010-2019 at Cleveland Clinic, Ohio, US, a quaternary-care center, was performed and reported following 'strengthening the reporting of observational studies in epidemiology' (STROBE) guidelines. Data regarding socio-demographic, histopathological, molecular characteristics, and clinical outcomes were collected. Primary outcomes were median overall survival (mOS) and progression-free survival (mPFS). Multivariable Cox proportional hazards modeling and propensity score matching were utilized to adjust for confounders. Results: 239 NSCLC-BM patients with EGFR alterations were identified, of which 107 received EGFR-TKIs after diagnosis of BMs. 77.6% (83/107) received it as first-line treatment, and 30.8% (33/107) received it in later (2nd-5th) lines of therapy, with nine patients receiving it in both settings. 64 of 107 patients received first-generation (erlotinib/gefitinib) TKIs, with 53 receiving them in the first line setting and 13 receiving it in the 2nd-5th lines of therapy. 50 patients received Osimertinib as third-generation EGFR-TKI, 30 in first-line, and 20 in the 2nd-5th lines of therapy. Univariable analysis in first-line therapy demonstrated mOS of first- and third-generation EGFR-TKIs as 18.2 and 19.4 months, respectively (p = 0.57), while unadjusted mPFS of first- and third-generation EGFR-TKIs was 9.3 and 13.8 months, respectively (p = 0.14). In 2nd-5th line therapy, for first- and third-generation EGFR-TKIs, mOS was 17.3 and 11.9 months, (p = 0.19), while mPFS was 10.4 and 6.08 months, respectively (p = 0.41). After adjusting for age, performance status, presence of extracranial metastases, whole-brain radiotherapy, and presence of leptomeningeal metastases, hazard ratio (HR) for OS was 1.25 (95% CI 0.63-2.49, p = 0.52) for first-line therapy. Adjusted HR for mOS in 2nd-to-5th line therapy was 1.60 (95% CI 0.55-4.69, p = 0.39). Conclusions: No difference in survival was detected between first- and third-generation EGFR-TKIs in either first or 2nd-to-5th lines of therapy. Larger prospective studies are warranted reporting intracranial lesion size, EGFR alteration and expression levels in primary tumor and brain metastases, and response rates.

14.
World Neurosurg ; 175: e397-e405, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37011761

RESUMO

BACKGROUND: Patients with spine tumors frequently require timely, multistep, and multidisciplinary care. A Spine Tumor Board (STB) provides a consistent forum wherein diverse specialists can interact, facilitating complex coordinated care for these patients. This study aims to present a single, large academic center's STB experience specifically reviewing case diversity, recommendations, and quantifying growth over time. METHODS: All patient cases discussed at STB from May 2006 (STB inception) to May 2021 were evaluated. Collected data submitted by presenting physicians and formal documentation completed during the STB are summarized. RESULTS: A total of 4549 cases were reviewed by STB over the study period, representing 2618 unique patients. Over the course of the study, a 266% increase in number of cases presented per week was observed (4.1 to 15.0). Cases were presented by surgeons (74%), radiation oncologists (18%), neurologists (2%), and other specialists (6%). The most common pathologic diagnoses discussed were spinal metastases (n = 1832; 40%), intradural extramedullary tumors (n = 798; 18%), and primary glial tumors (n = 567; 12%). Treatment recommendations included surgery, radiation therapy, or systemic therapy for 1743 cases (38%), continued routine follow-up/expectant management for 1592 cases (35%), supplementary imaging to better clarify the diagnosis for 549 cases (12%), and variable tailored recommendations for the remainder of cases (18%). CONCLUSIONS: Care of patients with spine tumors is complex. We believe that the formation of a stand-alone STB is instrumental to accessing multidisciplinary input, enhancing confidence in management decisions for both patients and providers, assisting with care orchestration, and improving quality of care for patients with spine tumors.


Assuntos
Neoplasias , Humanos , Coluna Vertebral
15.
Front Oncol ; 13: 1110440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910642

RESUMO

Brain metastases are a significant source of morbidity and mortality in patients with non-small cell lung cancer. Historically, surgery and radiation therapy have been essential to maintaining disease control within the central nervous system due to poorly penetrant conventional chemotherapy. With the advent of targeted therapy against actionable driver mutations, there is potential to control limited and asymptomatic intracranial disease and delay local therapy until progression. In this review paper, intracranial response rates and clinical outcomes to biological and immune therapies are summarized from the literature and appraised to assist clinical decision making and identify areas for further research. Future clinical trials ought to prioritize patient-centered quality of life and neurocognitive measures as major outcomes and specifically stratify patients based on mutational marker status, disease burden, and symptom acuity.

16.
J Neurooncol ; 161(1): 23-31, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36633800

RESUMO

PURPOSE: Cerebral radiation necrosis is a complication of radiation therapy that can be seen months to years following radiation treatment. Differentiating radiation necrosis from tumor progression on standard magnetic resonance imaging (MRI) is often difficult and advanced imaging techniques may be needed to make an accurate diagnosis. The purpose of this article is to review the imaging modalities used in differentiating radiation necrosis from tumor progression following radiation therapy for brain metastases. METHODS: We performed a review of the literature addressing the radiographic modalities used in the diagnosis of radiation necrosis. RESULTS: Differentiating radiation necrosis from tumor progression remains a diagnostic challenge and advanced imaging modalities are often required to make a definitive diagnosis. If diagnostic uncertainty remains following conventional imaging, a multi-modality diagnostic approach with perfusion MRI, magnetic resonance spectroscopy (MRS), positron emission tomography (PET), single photon emission spectroscopy (SPECT), and radiomics may be used to improve diagnosis. CONCLUSION: Several imaging modalities exist to aid in the diagnosis of radiation necrosis. Future studies developing advanced imaging techniques are needed.


Assuntos
Neoplasias Encefálicas , Lesões por Radiação , Radiocirurgia , Humanos , Radiocirurgia/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Lesões por Radiação/diagnóstico por imagem , Recidiva Local de Neoplasia/diagnóstico , Diagnóstico Diferencial , Necrose/etiologia
17.
Neurosurg Focus ; 53(5): E10, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36321290

RESUMO

OBJECTIVE: Stereotactic body radiotherapy (SBRT) is a precise and conformal treatment modality used in the management of metastatic spine tumors. Multiple studies have demonstrated its safety and efficacy for pain and tumor control. However, no uniform quantitative imaging methodology exists to evaluate response to treatment in these patients. This study presents radiographic local control rates post-SBRT, systematically compares measurements acquired according to WHO and Response Evaluation Criteria in Solid Tumors (RECIST) criteria, and explores the relationship to patient outcome. METHODS: The authors performed a retrospective review of prospectively obtained data from a cohort of 59 consecutive patients (81 metastatic isocenters) treated with SBRT and followed with serial MRI scans. Measurements were performed by a neuroradiologist blinded to the patients' clinical course. Local control status was determined according to both WHO and RECIST measurements, and agreement between the measuring methodologies was calculated and reported. RESULTS: Eighty-one isocenters (111 vertebral bodies) were treated with SBRT. The mean treatment dose was 13.96 Gy and the median follow-up duration was 10.8 months, during which 408 MRI scans were evaluated with both WHO and RECIST criteria for each scan point. Imaging demonstrated a mean unidimensional size decrease of 0.2 cm (p = 0.14) and a mean area size decrease of 0.99 cm2 (p = 0.03). Although 88% of the case classifications were concordant and the agreement was significant, WHO criteria were found to be more sensitive to tumor size change. The local control rates according to WHO and RECIST were 95% and 98%, respectively. CONCLUSIONS: Although WHO volumetric measurements are admittedly superior for tumor size measurement, RECIST is simpler, reproducible, and for the first time is shown here to be comparable to WHO criteria. Thus, the application of RECIST methodology appears to be a suitable standard for evaluating post-SBRT treatment response. Moreover, using comprehensive and consistent measuring approaches, this study substantiates the efficacy of SBRT in the treatment of spine metastases.


Assuntos
Radiocirurgia , Neoplasias da Coluna Vertebral , Humanos , Radiocirurgia/métodos , Neoplasias da Coluna Vertebral/cirurgia , Resultado do Tratamento , Coluna Vertebral/patologia , Estudos Retrospectivos
18.
Neurooncol Adv ; 4(1): vdac152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299794

RESUMO

Background: We sought to identify clinical and genetic predictors of temozolomide-related myelotoxicity among patients receiving therapy for glioblastoma. Methods: Patients (n = 591) receiving therapy on NRG Oncology/RTOG 0825 were included in the analysis. Cases were patients with severe myelotoxicity (grade 3 and higher leukopenia, neutropenia, and/or thrombocytopenia); controls were patients without such toxicity. A risk-prediction model was built and cross-validated by logistic regression using only clinical variables and extended using polymorphisms associated with myelotoxicity. Results: 23% of patients developed myelotoxicity (n = 134). This toxicity was first reported during the concurrent phase of therapy for 56 patients; 30 stopped treatment due to toxicity. Among those who continued therapy (n = 26), 11 experienced myelotoxicity again. The final multivariable clinical factor model included treatment arm, gender, and anticonvulsant status and had low prediction accuracy (area under the curve [AUC] = 0.672). The final extended risk prediction model including four polymorphisms in MGMT had better prediction (AUC = 0.827). Receiving combination chemotherapy (OR, 1.82; 95% CI, 1.02-3.27) and being female (OR, 4.45; 95% CI, 2.45-8.08) significantly increased myelotoxicity risk. For each additional minor allele in the polymorphisms, the risk increased by 64% (OR, 1.64; 95% CI, 1.43-1.89). Conclusions: Myelotoxicity during concurrent chemoradiation with temozolomide is an uncommon but serious event, often leading to treatment cessation. Successful prediction of toxicity may lead to more cost-effective individualized monitoring of at-risk subjects. The addition of genetic factors greatly enhanced our ability to predict toxicity among a group of similarly treated glioblastoma patients.

19.
Int J Radiat Oncol Biol Phys ; 114(2): 283-292, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35667529

RESUMO

PURPOSE: In addition to established prognostic factors in low-grade glioma (LGG), studies suggest a sexual dimorphism with male sex portending worse prognosis. Our objective was to identify the effect of sex on presentation and outcomes in LGG. METHODS AND MATERIALS: We conducted a retrospective cohort study of adults (aged ≥18 years) diagnosed with LGG (World Health Organization 2016 grade 2 glioma). Patients with IDH wild-type tumors were excluded. Patients were matched between male and female sex by age, treatment, and surgery via propensity score matching. Patient, tumor, and treatment characteristics were analyzed by sex. Endpoints included overall survival (OS), next intervention-free survival (NIFS), progression-free survival, and malignant transformation-free survival. Kaplan-Meier analyses and Cox proportional hazards regression multivariable analysis with backward elimination were completed. RESULTS: Of the 532 patients identified, 258 (48%) were men. Men were more likely to present with seizure (69.38% vs 56.57%, P = .002), but no other statistically significant differences between sexes at presentation were identified. Five-year OS was higher in women at 87% (95% confidence interval [CI], 83%-91%) versus 78% (95% CI, 73%-84%) in men (P = .0045). NIFS was significantly higher in female patients at 68% (95% CI, 62%-74%) versus 57% (95% CI, 51%-64%) in men (P = .009). On multivariable analysis, female sex was independently associated with improved OS (hazard ratio [HR], 1.54; 95% CI, 1.16-2.05; P = .002), NIFS (HR, 1.42; 95% CI, 1.42; P = .004), and malignant transformation-free survival (HR, 1.62; 95% CI, 1.24-2.12; P = .0004). In patients with molecularly defined LGG (IDH and 1p19q status; n = 291), female sex remained independently associated with improved OS (HR, 1.79; 95% CI, 1.16-2.77; P = .008) and NIFS (HR, 1.45; 95% CI, 1.07-1.96; P = .016). CONCLUSIONS: In this study, female sex was independently associated with improved outcomes. These findings support intrinsic sex-specific differences in LGG behavior, justifying further studies to optimize management and therapeutics based on sex.


Assuntos
Neoplasias Encefálicas , Glioma , Adolescente , Adulto , Neoplasias Encefálicas/patologia , Feminino , Glioma/patologia , Humanos , Masculino , Prognóstico , Estudos Retrospectivos , Caracteres Sexuais
20.
Chin Clin Oncol ; 11(2): 15, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35534793

RESUMO

BACKGROUND AND OBJECTIVE: Brainstem metastases comprise fewer than 7% of all brain metastases. Nonetheless, they present clinicians with unique clinical challenges in symptom management and treatment. No comprehensive review summarizing the management of brainstem metastases exists. This review aims to summarize epidemiology, anatomy, clinical correlation, prognosis, options for management of symptoms, treatment, treatment toxicity, and dose and fractionation for brainstem stereotactic radiosurgery (SRS) as reported in the literature. METHODS: In July 2021, we searched PubMed and Embase for retrospective studies of brainstem metastasis treatment, as well as case series and case reports describing diagnosis and clinical management of brainstem metastasis. Keywords and MeSH terms searched included "brainstem metastasis", "symptomatic brainstem metastasis", "brain metastasis", "stereotactic radiosurgery brainstem", "whole brain radiation brainstem", "brainstem metastasis resection", "brainstem radiation toxicity", "brainstem radiosurgery toxicity", "brainstem radiosurgery dose", and "radiosurgery dose tolerance". Titles and abstracts were screened for relevant articles and studies. References from full-text articles were screened for additional studies. KEY CONTENT AND FINDINGS: Single-institution studies and multicenter retrospective analyses from 1993 to 2021 reflect a shift from reliance on whole-brain radiation therapy (WBRT) to SRS for primary treatment of brainstem metastases. Recent multicenter retrospective analyses and single-institution case series support the safety and efficacy of SRS of brainstem metastases in symptom management and preservation of quality of life. Incidence of radiation-induced toxicity following SRS of brainstem metastases is comparable to that of SRS for other brain metastases. Complications following brainstem SRS are most strongly associated with prior WBRT. CONCLUSIONS: Radiation oncologists play a central role in the treatment of brainstem metastases due to reliance on SRS. Dose and fractionation of brainstem SRS remain largely institution-dependent. The field would benefit from inclusion of brainstem metastases in prospective trials of SRS and studies of adverse effects of salvage WBRT after prior SRS of brainstem metastases.


Assuntos
Neoplasias Encefálicas , Lesões por Radiação , Radiocirurgia , Neoplasias Encefálicas/secundário , Tronco Encefálico , Irradiação Craniana , Humanos , Estudos Multicêntricos como Assunto , Estudos Prospectivos , Qualidade de Vida , Lesões por Radiação/etiologia , Lesões por Radiação/cirurgia , Radiocirurgia/efeitos adversos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...